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Figure 1. SVAD. Our method creates high-fidelity 3D avatars from a single image through synthetic data generation. We leverage video
diffusion to generate pose-conditioned animations, enhance them with identity preservation and image restoration modules, then train a 3D
Gaussian Splatting avatar. The resulting avatars maintain consistent identity across novel poses and viewpoints while enabling real-time
rendering, outperforming state-of-the-art approaches.

Abstract

Creating high-quality animatable 3D human avatars from
a single image remains a significant challenge in computer
vision due to the inherent difficulty of reconstructing com-
plete 3D information from a single viewpoint. Current
approaches face a clear limitation: 3D Gaussian Splat-
ting (3DGS) methods produce high-quality results but re-
quire multiple views or video sequences, while video dif-
fusion models can generate animations from single im-
ages but struggle with consistency and identity preserva-
tion. We present SVAD, a novel approach that addresses
these limitations by leveraging complementary strengths of
existing techniques. Our method generates synthetic train-
ing data through video diffusion, enhances it with identity
preservation and image restoration modules, and utilizes
this refined data to train 3DGS avatars. Comprehensive
evaluations demonstrate that SVAD outperforms state-of-
the-art (SOTA) single-image methods in maintaining iden-
tity consistency and fine details across novel poses and
viewpoints, while enabling real-time rendering capabili-

ties. Through our data augmentation pipeline, we overcome
the dependency on dense monocular or multi-view training
data typically required by traditional 3DGS approaches.
Extensive quantitative, qualitative comparisons show our
method achieves superior performance across multiple met-
rics against baseline models. By effectively combining the
generative power of diffusion models with both the high-
quality results and rendering efficiency of 3DGS, our work
establishes a new approach for high-fidelity avatar genera-
tion from a single image input.

1. Introduction

The ability to generate animatable 3D human avatars from
minimal input data, such as a single-image, has significant
potential across a range of applications. Traditional meth-
ods, particularly those based on 3DGS, have demonstrated
considerable success in producing high-quality avatars [14,
34, 68, 69, 77, 86, 87, 93, 110, 121]. These methods
rely on dense input data, typically monocular or multi-view
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video [14, 34, 68, 77, 86, 93, 121], to achieve high fidelity
across varied viewpoints and poses. This reliance on ex-
tensive video input complicates deployment in single-image
scenarios, where ensuring viewpoint consistency and adapt-
ability to novel poses becomes a key challenge.

Recent advancements in video diffusion models offer a
potential solution by enabling animation generation from a
single static image [33, 49, 97, 104, 122]. These models
use certain conditions in diffusion processes to create video
sequences, demonstrating the powerful generative capabili-
ties of diffusion for single-image-driven animation. How-
ever, diffusion models often struggle to maintain tempo-
ral coherence, leading to inconsistent features and identity
drift across frames [5, 19, 31, 90] . Additionally, their it-
erative denoising process for each frame introduces signif-
icant computational overhead, limiting their feasibility for
real-time or interactive applications where rapid rendering
across novel views is essential.

To overcome these challenges, we propose SVAD, a
novel synthetic data generation and avatar creation pipeline
that synergizes the generative flexibility of diffusion mod-
els with the efficient rendering capabilities of 3DGS avatars.
Our approach leverages video diffusion model [94] to gen-
erate diverse pose-conditioned synthetic training data from
a single-image. This synthetic data is refined through an
identity-preservation module and an image restoration mod-
ule to ensure that perceptual identity consistency and struc-
tural fidelity are preserved across diverse poses and tempo-
ral sequences. The resulting high-quality synthetic dataset
is then used to train a 3DGS avatar model [68], which bene-
fits from the rapid rendering capabilities inherent to 3DGS.
By combining the generative strengths of diffusion for syn-
thetic data creation with the efficiency of 3DGS for ren-
dering, SVAD achieves consistent, high-quality 3D avatar
animations from single-image input.

In summary, our main contributions are:
• We introduce a novel pipeline that generates high-quality

synthetic training data from a single-image to create de-
tailed, animatable 3D human avatars.

• We develop a comprehensive data augmentation approach
that combines identity preservation and image restoration
to ensure consistent identity and fine details across di-
verse poses.

• We demonstrate through extensive experiments that our
synthetic data-driven approach significantly outperforms
SOTA single-image avatar generation methods in identity
preservation and novel pose adaptation while maintaining
efficient real-time rendering.

2. Related Work
Diffusion Model for Human Image Animation The use
of diffusion models has led to significant advancements in
human image animation, enabling the generation of realistic

and temporally consistent animations from static images [1,
6, 9, 22, 35, 41, 75, 79, 84, 88, 89, 107, 109, 114, 117].
Early methods, such as PIDM [4] and DreamPose [47], fo-
cused on improving texture fidelity by employing texture
diffusion modules to align texture patterns between refer-
ence and target images. These methods, while enhancing
detail preservation, still face challenges in maintaining tem-
poral stability across frames.

Recent works, including DisCo [97] and Animate Any-
one [33], have extended diffusion models to improve tem-
poral consistency and fine-grained control in human anima-
tion tasks. DisCo leverages dual ControlNets [113] to sep-
arately control pose and background elements, providing
more robust conditioning for complex motion sequences.
Similarly, Animate Anyone integrates a ReferenceNet with
temporal attention layers to ensure appearance consistency
and smooth transitions across frames, thereby addressing
flickering issues commonly observed in earlier models.
Dynamic 3D Gaussian based Avatars The concept of
Gaussian splatting for 3D avatars has emerged recently as
an innovative approach to explicit scene representation [48].
This technique models a scene as a collection of 3D Gaus-
sian elements, each containing photometric and geometric
properties. During rendering, these Gaussian splats are pro-
jected onto the image plane, creating the final rendered out-
put. The efficiency of 3DGS has been demonstrated in both
static [37, 44, 57] and dynamic [20, 46, 55, 58, 66] scenes,
making it a versatile tool for various applications. Recent
advancements [7, 8, 13, 18, 36, 39, 59, 76, 77, 96, 123]
have explored the use of 3DGS to create photorealistic hu-
man avatars across different scenarios. These methods com-
monly rely on multi-view data [61, 72, 119] or monocular
video [34, 39, 59, 68, 77] as input to achieve high-quality,
consistent results. The advantage of 3DGS lies in its ability
to produce temporally stable animated avatars with superior
quantitative metrics.

3. Method
To generate high-quality human avatars from a single-
image, facilitating free-viewpoint rendering and realis-
tic animation, we integrate the generative capabilities of
video diffusion models with the rendering efficiency of 3D
Gaussian-based avatars. We start by leveraging a pretrained
video diffusion model [94] for character animation to pro-
duce initial synthetic data, as described in Sec. 3.1. Directly
using these frames to train a 3DGS avatar model [68], how-
ever, often yields poor results, with challenges in preserv-
ing facial identity, clothing details, and maintaining consis-
tent multi-view coherence across side and back views. To
address these issues and enhance avatar quality, we intro-
duce a data augmentation pipeline in Sec. 3.2 comprising
identity-preservation and image-restoration modules to re-
fine the diffusion outputs. With the augmented synthetic
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Figure 2. Overall Pipeline of SVAD. Starting from a single input image, the diffusion model generates pose-conditioned animations,
which are refined using an identity preservation module and an image restoration module. The refined outputs are then used to train the
3DGS avatar, enabling high-fidelity, animatable 3D avatars with consistent details across poses and viewpoints.

data, we proceed to train a 3DGS avatar model, as out-
lined in Sec. 3.3. The following sections detail the technical
methodologies employed in our approach.

3.1. Video Diffusion Module
To generate an animated character video V from a single in-
put image I , we leverage MusePose [94], a finetuned vari-
ant of Animate Anyone [33], which is a SOTA video dif-
fusion model designed for realistic human animation while
maintaining temporal consistency and appearance fidelity.
MusePose employs a U-Net [81]-based diffusion architec-
ture with integrated pose and temporal controls, allowing
for pose-guided animation across frames. For our pipeline,
we utilize a pose sequence video from a sequence from the
People Snapshot [2] dataset, which depicts a subject per-
forming a full-body rotation with arms extended horizon-
tally. This sequence results in 189 frames that serve as pose
inputs to the MusePose video diffusion model.

The model architecture incorporates several key compo-
nents for effective character animation. The denoising UNet
is implemented as a 3D UNet [16] with motion modules
for temporal coherence. Specifically, we use Vanilla mo-
tion modules [26, 27] with temporal self-attention blocks at
resolutions of [1, 2, 4, 8] and in the mid-block. Each trans-
former [95] block contains 8 attention heads, with tempo-
ral position encoding enabling positional awareness across

a sequence of up to 128 frames. To incorporate pose guid-
ance, a lightweight Pose Guider encodes the motion control
signal from the predefined 2D keypoints into a pose-aligned
latent representation P (pt) ∈ RH×W×C . For a pose feature
pt ∈ RJ×2 at time t, where J is the number of keypoints,
we align the encoding to ensure continuity between frames
by adding this encoded pose signal to the noise latent zt:

zt = zt + P (pt) (1)

For the diffusion process, we adopt a v-prediction [83] for-
mulation with zero-SNR sampling [63], using a scaled lin-
ear beta schedule with βstart = 0.00085 and βend = 0.012.
The DDIM [91] sampler is configured for efficient inference
with 20 sampling steps and a classifier-free guidance [30]
scale of 3.5.

A critical challenge in character animation is ensuring
anatomical consistency between the reference image and
the motion poses. Direct application of pose control can re-
sult in unnatural animations due to mismatches in body pro-
portions [9]. Therefore, we employ a comprehensive pose
alignment procedure that adapts the source pose to match
the reference character’s physical characteristics.

Given a reference pose Pref and a source pose Psrc de-
tected using DWpose [106], we compute scale parameters
S = {s1, s2, . . . , s10} for ten distinct body regions: neck,
face, shoulders, upper arms, lower arms, hands, torso, up-
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Figure 3. 3D Avatars trained by SVAD. SVAD generates high quality 3D avatars with just a single-image. The trained avatars can be
rendered from any view point, in any pose.

per legs, and lower legs. For each body part i, we compute
its scale factor si as the ratio between the corresponding
keypoint distances. For body parts with bilateral symmetry
(e.g., arms), we average the scales from both sides:

sarm upper =
1

2

(
∥p2ref − p3ref∥
∥p2src − p3src∥

+
∥p5ref − p6ref∥
∥p5src − p6src∥

)
(2)

To apply these scales to the source pose, we use a rotation
matrix transformation centered at anchor points specific to
each body part:

p′ = ci + si · (p− ci) (3)

where ci is the anchor center for part i. This hierarchical ap-
proach ensures body proportions match the reference while
maintaining the overall pose structure.

3.2. Data Augmentation Module
Training the 3DGS model using only outputs from the video
diffusion model often results in low-fidelity avatars, par-

ticularly in terms of facial details and high-frequency fea-
tures like hands and clothing. To address these challenges,
we introduce a data augmentation module that enhances the
quality of the training data. This module includes an iden-
tity preservation sub-module ensuring coherence in facial
details across frames and a image restoration submodule
which refines texture quality and high-frequency details, re-
sulting in more realistic textures. This comprehensive data
augmentation significantly improves the synthetic training
data, enabling the 3DGS avatar model integrated in the fu-
ture to generate more realistic and detailed 3D avatars.

Identity preservation sub-module. To ensure consistent
and realistic facial details across frames, we implement an
identity preservation module that combines 3D head recon-
struction and facial fusion techniques. From a single input
image, we first create a 3D Gaussian-based head avatar us-
ing a method inspired by Chu et al. [15], which employs a
novel dual-lifting approach that predicts both forward and
backward lifting distances.
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Figure 4. Qualitative Evaluation on the People Snapshot dataset and of THuman dataset scan renderings. From a single-image input,
SVAD generates high-quality, animatable 3D avatars.

Given an input image Is, global and local features Flocal
are extracted using a frozen DINOv2 [71] backbone. These
features are used to predict forward and backward lifting
distances, positioning 3D Gaussians Gpos as follows:

Gpos = [ps + EConv0(Flocal) · ns,ps − EConv1(Flocal) · ns],
(4)

where ps is the initial point plane, ns is the normal vec-
tor, and EConv are convolutional layers predicting offsets.
To capture expression variations, we bind 3DMM [60] fea-
tures:

Gexpr = MLP(F3DMM + Fglobal). (5)

To animate this 3D head avatar, we separately track
FLAME [60] parameters Θ = {β, ψ, θ, ϕ} from our pre-
defined pose sequence video (the same sequence used in
the video diffusion module), where β ∈ R300 represents
shape parameters, ψ ∈ R100 expression parameters, θ ∈ R6

global pose parameters, and ϕ ∈ R6 eye pose parameters.
These tracked parameters serve as animation controls for

the reconstructed 3D head. Using these tracked FLAME
parameters, we render the 3D head avatar to generate a
sequence of head images that match our predefined pose
sequence. These renderings provide high-quality, identity-
consistent facial details across different viewpoints. Since
the quality of the renderings deteriorates for back-of-head
views, we selectively apply the face fusion process only to
frames where the head is front-facing (front and side views).

For the face fusion process, we detect facial land-
marks [51] on both the diffusion-generated frame Iorig and
the rendered head image Ihead, compute an affine transfor-
mation for alignment, and use Poisson image editing [74]
for seamless blending:

min
I

∫
Ω

∥∇I −∇Iwarp∥2 dx dy, subject to I|∂Ω = Iorig|∂Ω,
(6)

where Ω is defined by the facial mask. This ensures tempo-
rally consistent facial details while preserving the original
identity throughout the animation sequence.
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Image restoration sub-module. Finally, to preserve qual-
ity of fine detailed regions, we employ an image restoration
module based on the work of Chen et al. [12], specifically
their diffusion-based image restoration method BFRffusion.
This approach leverages the generative prior encapsulated
in the pretrained Stable Diffusion [80] model to enhance
image details through a comprehensive architecture that ef-
fectively extracts features from low-quality images and re-
stores realistic facial details.

For our implementation, we set the super-resolution
scale factor to s = 1.5, which our empirical analysis
showed provides an optimal balance between detail en-
hancement and artifact suppression. We observed that scale
factors s < 1.5 produce insufficient detail recovery, while
factors s > 2.0 introduce perceptual artifacts (particularly
in specular regions such as eyes) and significantly increase
computational demands during avatar training. The diffu-
sion process uses 50 DDIM sampling steps with:

zt−1 =
√
αt−1

(
zt −

√
1− αtϵθ(zt)√
αt

)
+
√
1− αt−1ϵθ(zt)

(7)
where αt =

∏t
i=1(1− βi) and ϵθ is the denoising network.

We utilize a classifier-free guidance scale of w = 3.5, with
the guidance equation:

ϵ̂θ(zt) = (1 + w)ϵθ(zt)− wϵθ(zt, ∅) (8)

where ϵθ(zt, ∅) represents the unconditional prediction.
This achieves an optimal balance between restoration qual-
ity and processing speed. For face regions, the method em-
ploys a face restoration helper with facial landmark detec-
tion to specifically enhance facial details, ensuring identity
consistency across generated frames. Restored faces are
blended with Poisson image editing.

This image restoration submodule significantly improves
the fidelity and realism of our synthetic training data by
restoring fine facial details, enhancing texture quality in
clothing and accessories, and improving overall image co-
herence. The refined data enables the 3DGS avatar to
learn more accurate representations with consistent high-
frequency details that persist across poses and viewpoints.

3.3. 3D Human Gaussian Splatting Module
We apply the architecture of a 3DGS based avatar method
introduced by Moon et al. [68], which integrates the SMPL-
X [73] model with a 3D Gaussian-based representation to
produce animatable human avatars. Each 3D Gaussian acts
as a vertex connected by a pre-defined mesh topology fol-
lowing SMPL-X. This hybrid representation combines the
expressive surface modeling of SMPL-X with the flexibility
of a volumetric approach, allowing for smooth interpolation
across the body surface essential for realistic animations.

Each Gaussian point is associated with positional data
V ∈ RN×3, RGB color values C ∈ RN×3, and a scale

parameter S ∈ RN , where N is the number of Gaussians.
The Gaussian splatting rendering equation is:

I = f(V, exp(S), C,K,E), (9)

where V represents positions, S denotes scale, C colors,
and K and E camera parameters.

Pose-dependent deformations are applied through an
MLP network, predicting offsets for each Gaussian based
on SMPL-X pose parameters:

Vpose = V +∆Vpose +∆Vexpr. (10)

To maintain spatial coherence, a Laplacian regularizer [70,
92] minimizes the difference between the Laplacian of the
canonical mesh and the deformed Gaussian points:

LLap = ∥∆Vcanonical −∆Vdeformed∥2 . (11)

This approach combined with our augmented synthetic data
achieves highly realistic, animatable avatars capable of real-
time rendering with smooth deformations across facial ex-
pressions, body movements, and hand gestures.

4. Experiments
4.1. Datasets and Metrics
People-Snapshot Dataset [2] We conduct our avatar evalu-
ation on the People-Snapshot dataset, which features video
recordings of subjects performing 360-degree rotations.
Following both Anim-NeRF [102] and InstantAvatar [42],
we address a known limitation in this dataset: the provided
pose parameters often exhibit misalignment with the actual
image content. Anim-NeRF addressed this by optimizing
pose parameters for both training and test sequences. To en-
sure fair comparison with existing methods, we adopt these
same optimized pose parameters and keep them frozen
throughout our training process for fair comparison.
THuman Dataset [108] For evaluating single-image 3D
human reconstruction, we employ the THuman dataset, ad-
hering to the methodology established in Ultraman [11].
Our procedure involves randomly selecting 100 scans and
generating renderings from four viewpoints (front, left,
right, back). We then measure the similarity between our
reconstructed outputs and the ground-truth scan render-
ings from these identical perspectives, facilitating objective
comparison with other SOTA methods.
Evaluation Metrics Our evaluation framework uses four
metrics to quantify reconstruction quality: PSNR [24],
SSIM [99], LPIPS [115], and CLIP Similarity [78] (referred
to as CLIP in our tables). This combination provides com-
prehensive assessment across different dimensions: PSNR
for pixel accuracy, SSIM for structural coherence, LPIPS
for perceptual alignment with human vision, and CLIP for
semantic consistency at the feature level. The use of these
metrics enables thorough evaluation of both fine-grained
detail, and overall perceptual quality.
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Method Female-4-casual Male-3-casual Female-3-casual Male-4-casual

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

HumanNeRF [102] 27.07 0.9615 0.0151 26.90 0.9605 0.0181 24.46 0.9516 0.0269 25.50 0.9397 0.0357
GaussianAvatar [34] 30.84 0.9771 0.0140 30.98 0.9790 0.0145 29.55 0.9762 0.0220 28.78 0.9755 0.0230
ExAvatar [68] 30.98 0.9789 0.0333 29.75 0.9628 0.0402 29.74 0.9678 0.0458 28.89 0.9666 0.0500
ExAvatar [68] (Single Image) 20.42 0.9427 0.0656 23.24 0.9448 0.0562 20.12 0.9492 0.0543 23.74 0.9497 0.0610
Ours (Single Image) 21.51 0.9442 0.0528 22.54 0.9467 0.0484 21.96 0.9609 0.0541 23.71 0.9570 0.0592

Table 1. Quantitative Evaluation on the People Snapshot [2] Dataset. Our approach demonstrates superior performance on single-image
input, outperforming the baseline on most of the metrics. The top two results for single-image input are highlighted in first and second ,
with the overall best result highlighted in first . Note that methods that use monocular input utilize approximately 200 input frames.

4.2. Quantitative Evaluation
We quantitatively evaluate the quality of single-image 3D
avatars generated by our method against SOTA 3D avatar
generation methods [34, 68, 102]. While current 3D avatar
models generally require a monocular video as input, we as-
sess our model’s performance using a single-image as input
on ExAvatar [68]. Additionally, we report results using the
original full training set of approximately 200 input frames
for monocular input based avatar models for reference. As
shown in Table 1, our model achieves highest scores on
most of the metrics among single-image input methods.
We further compare our approach with single-view 3D hu-
man reconstruction methods [11, 29, 38, 82, 116], many of
which employ the SMPL model, allowing for animatability
through mesh fitting and reposing techniques, such as those
in Editable Humans [28]. We randomly sample 100 scans
from the THuman dataset and report results. We repose
our trained avatar using ground-truth SMPL-X parameters
and compare with the ground-truth scan renderings from the
same views. As presented in Table 2, our method surpasses
all baselines, demonstrating superior quality in 3D human
reconstruction tasks.

4.3. Qualitative Evaluation
Figure 4 shows the overall quality of our generated 3D
avatars from single-images in the People Snapshot and the
THuman dataset. Figure 5, Figure 6 shows that our method
performs superior compared to current SiTH [29]. For
single-image avatar generation, we evaluate on the People
Snapshot dataset and compare against ExAvatar [68]. For
fairness, we train ExAvatar for the same number (12,000)
of iterations. Figure 7 shows that for single-image avatar
generation, our method performs superior especially for the
back and side views.

4.4. Ablation Study
In this section, we conduct ablation studies to validate each
component of our methods. The average metrics over 4
sequences in the People Snapshot dataset are reported in
Table 3. It shows that our methods modules are required

a) Input b) SiTH c) SVAD

Figure 5. Qualitative Evaluation against SiTH [29]. Our ap-
proach better reconstructs complex contours and subtle features,
resulting in a more lifelike and coherent side-view appearance.

a) Input b) SiTH c) SVAD

Figure 6. Qualitative Evaluation against SiTH [29]. Our method
reconstructs fine detail (hands), while preserving original identity
in facial regions.

to reach the optimal performance reflected by all the met-
rics. Using the THuman dataset, we apply the same eval-
uation technique as in our quantitative evaluation. Results
show that our method performs the best in PSNR, SSIM and
CLIP similarity and performs second best in LPIPS. Fig-
ure 8 shows visual results of the effect of the image restora-
tion module. High-detailed regions such as clothing texture,
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a) Ground Truth b) ExAvatar c) SVAD

Figure 7. Qualitative Evaluation against ExAvatar [68] in single-
image to 3D avatar task. Our method generates more plausible
back and side views with the generated synthetic dataset.

Method PSNR↑ SSIM↑ LPIPS↓ CLIP↑

PIFu [82] 15.62 0.8921 0.1903 0.8612
TeCH [38] 15.85 0.8892 0.1667 0.8890
Ultraman [11] 18.13 0.9019 0.1334 0.9089
SIFU [116] 18.59 0.8591 0.1402 0.8873
SiTH [29] 19.98 0.9018 0.1294 0.9084
Ours 20.92 0.9291 0.1124 0.9321

Table 2. Quantitative Evaluation on single-image to 3D human
reconstruction tasks on 100 scan renderings of the THuman [108]
Dataset. Top two results are colored as first second .

Method PSNR↑ SSIM↑ LPIPS↓ CLIP↑
w/o Identity Preserve 22.19 0.9419 0.0623 0.9231
w/o Image Restoration 22.61 0.9298 0.0645 0.9239
Ours (Full) 22.79 0.9502 0.0594 0.9241

Table 3. Ablation study on the People Snapshot dataset. Our full
model consistently outperforms variants with individual compo-
nents removed across all metrics.

Method PSNR↑ SSIM↑ LPIPS↓ CLIP↑
w/o Identity Preserve 20.12 0.9256 0.1294 0.9284
w/o Image Restoration 20.16 0.9212 0.0799 0.9201
Ours (Full) 20.92 0.9291 0.1124 0.9321

Table 4. Ablation study on the THuman dataset. The full model
achieves superior performance in most metrics, demonstrating the
importance of each component in our pipeline.

fingers, and facial details are better preserved when apply-
ing our module. Figure 9, shows the visual effect of the
identity preservation module. We clearly show that original
input’s facial details are more preserved our module.

a) Input b) w/o image restoration c) Full model 

Figure 8. Ablation study on the image restoration module. We
show that applying the module into our pipeline recover fine de-
tails on the final avatar output.

a) Input (Cropped) b) w/o identity preserve c) Full Model 

Figure 9. Ablation study on the identity preservation module. We
show that with the module, the final avatar maintains facial details
on the original input image.

5. Conclusion and Discussion
In this work, we introduced SVAD, a novel synthetic data
generation approach for creating high-fidelity, animatable
3D human avatars from a single image. By combining
the generative power of diffusion models with the render-
ing efficiency of 3D Gaussian Splatting, SVAD produces
avatars that maintain consistent identity across varied poses
and viewpoints. Through comprehensive experiments, we
demonstrate that our method achieves SOTA performance.
Limitations and Future Work. Our method faces several
limitations. First, inaccurate background segmentation of
training frames produces floating artifacts. Second, our ap-
proach struggles with complex clothing textures and loose
outfits due to limitations of the video diffusion model in
generating detailed synthetic data. Finally, the computa-
tional requirements present practical challenges—the video
diffusion step demands substantial resources, and the com-
plete pipeline requires 5-6 hours per avatar generation. Fu-
ture work will focus on improving handling of diverse cloth-
ing types and optimizing computational performance.

8



References
[1] Badour AlBahar, Shunsuke Saito, Hung-Yu Tseng, Changil

Kim, Johannes Kopf, and Jia-Bin Huang. Single-image 3d
human digitization with shape-guided diffusion. In SIG-
GRAPH Asia, 2023. 2

[2] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian
Theobalt, and Gerard Pons-Moll. Video based reconstruc-
tion of 3d people models. In CVPR, 2018. 3, 6, 7, 13, 20,
21

[3] C Bradford Barber, David P Dobkin, and Hannu Huhdan-
paa. The quickhull algorithm for convex hulls. ACM TOMS,
1996. 14

[4] Ankan Kumar Bhunia, Salman Khan, Hisham Cholakkal,
Rao Muhammad Anwer, Jorma Laaksonen, Mubarak Shah,
and Fahad Shahbaz Khan. Person image synthesis via de-
noising diffusion model. In CVPR, 2023. 2

[5] Andreas Blattmann, Robin Rombach, Huan Ling, Tim
Dockhorn, Seung Wook Kim, Sanja Fidler, and Karsten
Kreis. Align your latents: High-resolution video synthesis
with latent diffusion models. In CVPR, 2023. 2

[6] Yukang Cao, Yan-Pei Cao, Kai Han, Ying Shan, and Kwan-
Yee K. Wong. Dreamavatar: Text-and-shape guided 3d
human avatar generation via diffusion models. In CVPR,
2024. 2, 17

[7] Hyunsoo Cha, Byungjun Kim, and Hanbyul Joo. Pega-
sus: Personalized generative 3d avatars with composable
attributes. In CVPR, 2024. 2

[8] Hyunsoo Cha, Inhee Lee, and Hanbyul Joo. Perse: Per-
sonalized 3d generative avatars from a single portrait. In
CVPR, 2025. 2

[9] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A
Efros. Everybody dance now. In ICCV, 2019. 2, 3

[10] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki
Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo,
Leonidas J Guibas, Jonathan Tremblay, Sameh Khamis,
et al. Efficient geometry-aware 3d generative adversarial
networks. In CVPR, 2022. 16

[11] Mingjin Chen, Junhao Chen, Xiaojun Ye, Huan-ang Gao,
Xiaoxue Chen, Zhaoxin Fan, and Hao Zhao. Ultraman:
Single image 3d human reconstruction with ultra speed and
detail. arXiv preprint arXiv:2403.12028, 2024. 6, 7, 8

[12] Xiaoxu Chen, Jingfan Tan, Tao Wang, Kaihao Zhang, Wen-
han Luo, and Xiaochun Cao. Towards real-world blind face
restoration with generative diffusion prior. IEEE TCSVT,
2024. 6, 15

[13] Yufan Chen, Lizhen Wang, Qijing Li, Hongjiang Xiao,
Shengping Zhang, Hongxun Yao, and Yebin Liu. Mono-
gaussianavatar: Monocular gaussian point-based head
avatar. In SIGGRAPH, 2024. 2

[14] Yushuo Chen, Zerong Zheng, Zhe Li, Chao Xu, and Yebin
Liu. Meshavatar: Learning high-quality triangular human
avatars from multi-view videos. ECCV, 2024. 1, 2

[15] Xuangeng Chu and Tatsuya Harada. Generalizable and an-
imatable gaussian head avatar. NeurIPS, 2024. 4, 14
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A. Implementation Details
In this section, we provide comprehensive technical details
of SVAD. We first describe the predefined pose sequences
that serve as conditioning inputs for our video diffusion
model. Next, we elaborate on the video diffusion mod-
ule, the identity preservation module and image restora-
tion module for enhancing facial fidelity and overall texture
quality. Finally, we elaborate on the training process for our
3DGS avatar, including the SMPL-X [73] parameter fitting
procedure and the optimization strategy for the 3D Gaussian
representation.

A.1. Predefined Pose Sequences
To initialize frame generation for our pipeline, we rely
on a predefined set of poses extracted from the People
Snapshot [2] dataset. Specifically, we utilize the male-4-
casual sequence, which depicts a subject performing a full-
body rotation with arms extended horizontally. Using DW-
Pose [106], we extract 2D keypoints K ∈ RJ×2, where
J = 17 is the number of keypoints, from this sequence to
create a standardized pose template. This sequence serves
as the conditioning input for the video diffusion model,
resulting in 189 frames of pose-guided human animation,
with a resolution of 1024× 1024.

Our experiments revealed that inference with lower reso-
lutions such as 512×512 produced animations with signifi-
cantly degraded facial details, which adversely affected sub-
sequent processing steps. Particularly, the landmark-based
face fusion technique requires accurate facial landmark de-
tection, which proved unreliable on low-resolution outputs.
The absence of distinct facial features in 512 × 512 out-
puts led to inconsistent landmark detection, compromising
the accuracy of 3D head rendering and warping operations.
The higher 1024 × 1024 resolution preserves critical facial
details, enabling robust landmark detection and consistent
face fusion results across the generated sequence.

A.2. Video Diffusion Module
For our video diffusion module, we leverage Muse-
Pose [94], a modified variant of Animate Anyone [33],
specifically designed for pose-guided video generation from
a single image. The architecture follows a UNet-based [81]
denoising diffusion model with temporal modeling capabil-
ities, enabling coherent video generation while maintaining
consistency with the reference image.

During inference, the video diffusion pipeline performs
iterative denoising of random noise guided by the reference
image and pose sequence. We configure the DDIM sam-
pler [91] with 20 sampling steps and a classifier-free guid-
ance [30] scale of 3.5 which keeps balance between gen-
eration quality and inference speed. The network architec-
ture employs a 3D variant of the standard UNet architecture,
where temporal layers enable information exchange across

video frames. The reference image features are extracted
using a CLIP vision encoder [78] and processed through a
reference UNet. These features are transferred to the de-
noising UNet via a custom attention mechanism:

Attn(Q,K, V ) = softmax
(
QKT

√
d

)
V (12)

where Q represents queries from the denoising UNet fea-
tures, while K and V are derived from the reference im-
age features. This mechanism ensures that generated frames
maintain the appearance details of the reference image.

The pose conditioning is handled by the PoseGuider
module, which processes pose skeleton images through a
series of convolutional layers to create pose feature embed-
dings. These embeddings are added to the latent noise to
spatially align the generation with target poses:

zt = zt + P (pt) (13)

where zt is the noise latent at timestep t, pt ∈ RJ×2 is
the pose feature at time t, and P (·) represents the pose
guider. The PoseGuider has an input convolutional layer,
followed by blocks with increasing channel dimensions
(16, 32, 64, 128), and a zero-initialized output projection to
the conditioning embedding channels.

For handling longer video sequences beyond the model’s
context window, we employ a sliding window [31] ap-
proach. The model processes frames in overlapping chunks
of length S = 48 with an overlap of O = 4 frames. This
enables the generation of arbitrarily long sequences while
maintaining temporal consistency. The generative process
for each video segment can be expressed as:

Vi:i+S = G(Iref, Pi:i+S , z) (14)

where Vi:i+S represents the generated video segment from
frame i to i + S, G is our diffusion model, Iref is the ref-
erence image, Pi:i+S are the corresponding pose skeletons,
and z is the random noise. By processing these overlapping
segments and blending them at the boundaries, the final full-
length human-animated video has smooth transitions.

A.3. Identity Preservation Module
Following the initial frame generation by the video dif-
fusion model, we refine the facial regions to enhance
identity consistency and detail preservation. Our identity
preservation pipeline consists of three main components:
FLAME [60] parameter tracking A.3.1, 3D head render-
ing A.3.2, and face fusion A.3.3. Each component plays
a crucial role in generating high-quality, identity-consistent
facial regions in our data augmentation pipeline.

A.3.1. FLAME Parameter Tracking
We begin by tracking FLAME parameters from our prede-
fined pose sequence video to guide the animation of our 3D
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head avatar. Using a tracking engine with focal length set
to 12.0, we extract parameters Θ = {β, ψ, θ, ϕ}, where
β ∈ R300 represents shape parameters, ψ ∈ R100 ex-
pression parameters, θ ∈ R6 global pose parameters, and
ϕ ∈ R6 eye pose parameters.

To ensure smooth parameter transitions across frames,
we apply Savitzky-Golay [45] filtering with a window
length of 9 frames and polynomial order of 2. For rotation
parameters, we employ quaternion-based smoothing [118]
with a continuity enforcement algorithm to handle sign
flips:

q′t+1 =

{
−qt+1, if qt · qt+1 < 0

qt+1, otherwise
(15)

Different parameter types are smoothed with specific mo-
mentum coefficients: rotation matrices α = 0.6, translation
vectors α = 0.6, and eye pose parameters α = 0.7. This
comprehensive smoothing strategy eliminates jitter and en-
sures temporal consistency in the final animation sequence.

A.3.2. 3D Head Rendering
Using GAGAvatar [15] as our 3D head modeling frame-
work, we utilize the tracked FLAME parameters to render
high-quality facial images that match our predefined pose
sequence. We leverage this model to render the 3D head
with precise control over pose and expression. The ren-
dering process begins with the FLAME model, which gen-
erates 3D vertices based on the tracked shape, expression,
pose, and eye parameters. We then employ a mesh renderer
with a resolution of 512 × 512 pixels, using the FLAME
topology for face modeling where focal length is set to 12.0.
This approach enables us to generate precisely controlled
facial renderings that maintain the identity of the source
image while adopting the pose and expression parameters
from the target sequence.

A.3.3. Face Fusion Process
We selectively apply face fusion only to frames when the
head rendering is front-facing. We determine this by ana-
lyzing eye landmark detection - specifically, when at least
one eye is clearly visible and properly detected in the facial
landmark set. This approach ensures face fusion is only ap-
plied to frames with reliable facial orientation, as the quality
of renderings deteriorates for back-of-head views where no
eyes are visible. After filtering, we perform structural sim-
ilarity assessment [100] and landmark-based warping [101]
with careful parameter tuning to ensure seamless integra-
tion.

First, we detect 68 facial landmarks using dlib [51] on
both the diffusion-generated frame Iorig and the rendered
head image Ihead from GAGAvatar. Before applying the
transformation, we validate the structural compatibility by
computing a Procrustes disparity measure [25] between the

landmark sets:

d(Lorig, Lhead) =

√√√√ 1

n

n∑
i=1

∥Lorig,i − Lhead,i∥2 (16)

where Lorig and Lhead are the normalized landmark sets.
We skip fusion when the disparity exceeds a threshold
of 0.01, preserving the original frame in cases where the
structural alignment would produce unnatural results. For
valid frames, we compute an affine transformation matrix
through corresponding landmarks using:

M = argmin
M

68∑
i=1

∥M · Lhead,i − Lorig,i∥2 (17)

where M is a 2 × 3 affine transformation matrix. This ma-
trix is estimated using a partial affine model that preserves
scale while allowing for rotation and translation, maintain-
ing proportional facial features during transformation. The
warped image is then computed by applying the transfor-
mation:

Iwarp = T (Ihead,M, (w, h)) (18)

where T represents the affine warping function that maps
pixels from the source to destination image according to
transformation M .

We then create a facial mask Ω by computing the convex
hull [3] of the landmarks to define the facial region:

Ω = convexHull(Lorig) (19)

Finally, we apply seamless cloning, a gradient-domain
blending implementation of Poisson image editing [74],
centered at the face centroid (cx, cy) with a blending fac-
tor α = 1.0:

Ifused = PoissonBlend(Iwarp, Iorig,Ω, (cx, cy)) (20)

This procedure solves the Poisson equation:

min
I

∫
Ω

∥∇I −∇Iwarp∥2 dx dy, subject to I|∂Ω = Iorig|∂Ω
(21)

The gradient-domain blending preserves boundary condi-
tions from the original image while replacing interior gra-
dients with those from the warped image. This approach
maintains lighting conditions and color consistency across
the boundary by solving for pixel values that create a
smooth transition while matching gradient fields. The com-
plete face fusion pipeline significantly reduces visible ar-
tifacts at the transition between the rendered face and the
original image, allowing consistent identity preservation
even under challenging viewpoints.
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A.4. Image Restoration Submodule
To enhance the quality of video diffusion outputs, partic-
ularly in facial regions, we integrate a hybrid restoration
pipeline based on BFRffusion [12]. Our approach com-
bines diffusion-based facial enhancement with background
upsampling to improve overall visual fidelity while preserv-
ing identity-specific details.

The restoration workflow begins with face detection us-
ing RetinaFace [17], which accurately localizes facial re-
gions in each frame. For aligned facial areas, we main-
tain a consistent face size of 512 × 512 with a 1 : 1 crop
ratio. When processing non-aligned faces, we employ a
landmark-based alignment process using a five-point facial
landmark detector with an eye distance threshold of 5 pixels
to filter out low-quality detections.

Each detected face undergoes diffusion-based restoration
using a latent diffusion model. The process follows a con-
ditional diffusion sampling approach:

zt−1 =

√
αt−1zt −

√
1− αtϵθ(zt)√
αt

+
√
1− αt−1ϵθ(zt)

(22)
where αt =

∏t
i=1(1− βi) and ϵθ is the denoising network.

We implement classifier-free guidance with a scale of w =
3.5:

ϵ̂θ(zt) = (1 + w)ϵθ(zt)− wϵθ(zt, ∅) (23)

where ϵθ(zt, ∅) represents the unconditional prediction.
The diffusion sampling process uses 50 DDIM steps with

a latent shape of R4×64×64 for 512×512 input images. The
input facial image is first encoded to a latent representation
through a VAE encoder, and the diffusion model progres-
sively refines this representation before decoding it back to
pixel space.

For background regions, we employ Real-ESRGAN [98]
with an RRDBNet [23] architecture and a 2× upsampling
scale. The background upsampler processes images in tiles
of 400 × 400 pixels with 10-pixel padding to handle high-
resolution inputs efficiently while maintaining consistent
quality across tile boundaries.

After separate processing of facial and background re-
gions, we integrate the enhanced components using in-
verse affine transformations computed from the original fa-
cial alignment process. This creates a seamless composite
where facial details are preserved and enhanced while main-
taining natural transitions to background areas:

Ifinal =Mface ⊙ T−1(Iface) + (1−Mface)⊙ Ibg (24)

where T−1 represents the inverse transformation that maps
the restored face back to its original position, and Mface is
the binary mask indicating facial regions.

This comprehensive image restoration approach signifi-
cantly enhances the perceptual quality of generated frames,

particularly improving fine facial details that may be lost
or degraded during the initial video diffusion process. The
integration of specialized facial and background processing
ensures optimal quality across the entire frame while main-
taining computational efficiency.

A.5. Gaussian Avatar Submodule
To transform our synthetic data into a high-quality, animat-
able 3D avatar, we employ a two-stage process: first, we fit
an SMPL-X model to our synthetic data sequences, then we
train a 3D Gaussian Splatting representation using the fitted
parameters as guidance.

A.5.1. SMPL-X Fitting Process
Prior to training the 3DGS avatar, we employ a comprehen-
sive fitting process to obtain accurate SMPL-X parameters
from our synthetic data. This multi-stage process ensures
that the avatar’s geometry accurately reflects the subject’s
physical characteristics and articulation.

Keypoint Extraction. The fitting pipeline begins with pose
and shape estimation. We utilize DWPose [106] to ex-
tract 2D whole-body keypoints from each frame of our syn-
thetic sequence. These keypoints provide critical informa-
tion about body articulation across the sequence. The key-
points are represented as K ∈ RJ×3, where J = 133 in-
cludes 17 body, 68 face, and 42 hand keypoints, with each
keypoint having (x, y, confidence) values. We then employ
MMPOSE [85] with the RTMPose-L [43] model for refine-
ment, using a confidence threshold of 0.5 to filter reliable
detections.

Initial Parameter Estimation. For facial geometry, we
leverage DECA [21] to estimate initial FLAME parame-
ters. The optimization uses perspective projection with fo-
cal length of 5000 pixels and 1024 × 1024 resolution tex-
tures. The FLAME parameters include shape coefficients
β ∈ R10, expression parameters ϕ ∈ R10, and pose param-
eters for jaw and eyes.

For body pose and shape, we incorporate
Hand4Whole [67] with the configuration: focal length
of 2000, principal point at image center, and input shape
of 256 × 256. This process yields initial estimates for
SMPL-X parameters: global orientation θroot ∈ R3, body
pose θbody ∈ R21×3, jaw pose θjaw ∈ R3, hand poses
θhands ∈ R30×3, and shape parameters βshape ∈ R10.

Parameter Optimization. These initial parameters are re-
fined through an optimization process with multiple objec-
tives. The primary loss function combines reprojection er-
ror, parameter regularization, and temporal smoothness:

Lfit = λkptLkpt + λregLreg + λtempLtemp (25)

The keypoint reprojection loss Lkpt measures the dis-
tance between projected model joints and detected 2D key-
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points, weighted by detection confidence:

Lkpt =

J∑
i=1

ci∥Π(Ji(θ, β))−Ki∥22 (26)

where Π is the perspective projection function, Ji(θ, β) is
the 3D position of joint i, Ki is the corresponding 2D key-
point, and ci is its confidence score.

The regularization term Lreg penalizes deviation from
prior pose and shape distributions:

Lreg = ∥β∥22 +
∑
j

∥θj − θmean∥22 (27)

The temporal consistency term Ltemp enforces smooth
transitions between frames:

Ltemp =
T−1∑
t=1

∥θt − θt+1∥22 + ∥βt − βt+1∥22 (28)

The optimization uses the Adam optimizer [52] with
learning rate 1 × 10−3 and loss weights λkpt = 1.0, λreg =
0.001, and λtemp = 0.1. The optimization proceeds in two
stages: first optimizing global position and orientation with
100 iterations, then refining all parameters with 200 itera-
tions.

Parameter Smoothing. To ensure temporal consistency
and reduce jitter, we apply the same smoothing approach
as used in our FLAME parameter tracking process in Sec-
tion A.3.1. Specifically, we employ Savitzky-Golay [45]
filtering with a window length of 9 frames and polynomial
order of 2. For rotation parameters, we utilize the identi-
cal quaternion-based smoothing procedure with continuity
enforcement to handle sign flips.

Segmentation and Depth Estimation. We generate fore-
ground masks using Segment Anything [53] with the ViT-H
backbone. The model uses keypoint-based prompting with
valid keypoints as point coordinates, and a bounding box
computed from these keypoints with an extension ratio of
1.2. We also extract depth information using Depth Any-
thing V2 [105] with the ViT-L backbone. The depth maps
are normalized and aligned with the SMPL-X mesh using
the following procedure:

scale =
σ(depthpred,fg)

σ(depthsmplx,fg)

depth′
pred =

depthpred

scale
depth′

pred = depth′
pred − µ(depth′

pred,fg) + µ(depthsmplx,fg)
(29)

where σ and µ represent standard deviation and mean of
depth values, and fg indicates foreground regions.

The extracted SMPL-X parameters Φ = θ, β, together
with corresponding image observations Itt = 1T , fore-
ground masks Mtt = 1T , and aligned depth maps Dt

T
t=1,

constitute a multi-modal conditioning set that guides the op-
timization of our 3D Gaussian representation.

A.5.2. 3DGS Avatar Training Process
With the fitted SMPL-X parameters and processed syn-
thetic data, we proceed to train the 3DGS-based avatar [68].
The training begins by initializing the triplane representa-
tion [10] T ∈ R32×128×128, encoding 3D features for both
body and facial regions. Gaussian parameters, including
positions V ∈ RN×3, colors C ∈ RN×3, and opacity
O ∈ RN , are optimized through backpropagation with the
following multi-objective loss function:

L = λRGBLRGB + λSSIMLSSIM + λLPIPSLLPIPS, (30)

where λRGB = 0.8, λSSIM = 0.2, and λLPIPS = 0.2 are the
weights for the RGB reconstruction, structural similarity,
and perceptual loss, respectively. The model is trained for
5 epochs with a batch size of 1, as required by the Gaussian
splatting renderer.

The optimization process proceeds in two stages. During
the warmup stage, Gaussian positions V are updated using
an adaptive learning rate:

αposition(t) = αinit ×
(
1− t

Tmax

)
+ αfinal ×

t

Tmax
, (31)

where αinit = 1.6 × 10−4, αfinal = 1.6 × 10−6, and
Tmax = 30, 000 iterations. Additional parameters, includ-
ing opacity O, scale S, and feature parameters, are opti-
mized with learning rates αopacity = 0.05, αscale = 0.005,
and αfeature = 0.0025, respectively.

Densification of the Gaussian distribution occurs be-
tween iteration 500 and 15, 000, at intervals of 100 iter-
ations. Gaussians with opacity values below a threshold
(O < 0.005) are pruned, and dense regions are refined us-
ing gradient-based adjustments. The pruning mechanism
ensures efficient representation while preserving fidelity:

Vnew = Vold − η
∂L

∂V
, (32)

where η is the learning rate and ∂L
∂V represents the gradient

of the loss with respect to Gaussian positions.
A hierarchical learning approach progressively increases

the spherical harmonic degree dsh from 0 to 3 over the
course of training. The training loop dynamically adjusts
Gaussian parameters, leveraging an Adam optimizer with
a learning rate of 1 × 10−3 for the overall framework and
parameter-specific rates for finer control. For our exper-
iments, we employ the male SMPL-X [73] model due to
its superior performance in complex sequences. The entire
pipeline runs on a single GPU, ensuring scalability and ef-
ficiency.
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“A woman with orange 
blouse and brown skirt” 

“Lionel Messi in FC 
Barcelona uniform ” 

“A woman with green t-shirt 
and khaki shorts” 

“A man with brown seater 
and bright pants ” 

“A woman with navy blue 
blazer and matching pants” 

“A man with khaki pants and 
green polo shirt ” 

Figure 10. Text to 3D Avatar. Our method enables the generation of animatable 3D avatars from text prompts. We show results for various
textual descriptions processed through Flux-1 Dev [56] for image generation, followed by our single-image to 3D avatar pipeline.

B. Applications

Our pipeline for 3D avatar generation from single images
also serves as a basis for developing further creative appli-
cations. By integrating our core pipeline with contempo-
rary text-to-image synthesis [56] and image editing meth-
ods [64], we expand its range of use. This section outlines
two such applications: a text-to-3D avatar generation work-
flow in Section B.1, which enables the creation of animat-
able 3D characters from textual inputs, and a text-guided
avatar editing application in Section B.2, which permits
semantic modifications to an avatar’s visual features using
text prompts.

B.1. Text to 3D Avatar

The generation of 3D avatars directly from textual de-
scriptions is an area of interest, and various approaches
[32, 40, 54, 62, 111] have be explored. We first leverage the
Flux-1 Dev [56] model for text-to-image generation. This
generated image then serve as input to our single-image to
3D avatar pipeline, producing the 3D avatar that preserve
the features described in the text, as shown in Figure 10.
This integration extends the applicability of our framework
to scenarios where photographic references are unavailable,
thus broadening the scope of generative 3D human repre-
sentation.

B.2. Text-Guided 3D Avatar Editing

Our pipeline enables text-guided 3D avatar editing [6, 50,
65, 112] as illustrated in Figure 11. By integrating Step1X-
edit [64], a text-based image editing diffusion model, we
enable semantic modifications to the input image. Given
an input image and a textual editing prompt, the diffu-
sion model generates the modified reference image that in-
corporate the requested prompts. This edited image then
proceeds through our standard single-image to 3D avatar
pipeline, generating the modified 3D avatar that reflect
the text-specified edits. This approach allows customizing
avatar appearances without manual image manipulation or
3D modeling.

C. Failure Cases

Despite the demonstrated effectiveness of SVAD, we ob-
serve several limitations that highlight opportunities for fu-
ture research. Our analysis reveals three primary categories
of failure cases that affect the quality and consistency of
the generated avatars: issues stemming from segmentation
artifacts in Section C.1, challenges in accurately modeling
loose clothing deformation in Section C.2, and inconsisten-
cies observed in back view synthesis Section C.3.
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“Make him wear an orange 
blouse and blue jeans” 

“Make him wear a blue jacket” Input “Make him wear a vintage leather 
jacket with ripped jeans” 

“Make him wear a burgundy sweater 
with navy pants” Input 

Input 

Input 

Figure 11. Text-Guided 3D Avatar Editing. Our framework enables semantic editing of 3D avatars using textual prompts. The resulting
edited images are then processed by our single-image to 3D avatar pipeline, producing updated, animatable 3D avatars that reflect the
specified textual edits.

C.1. Segmentation Artifacts

Limitations in the segmentation model [53], leveraged in
preprocessing the generated synthetic data for 3D avatar
training, can impact our pipeline’s output, as illustrated in
Fig. 12. Background portions can be included in the train-
ing data for the 3D Gaussian representation. Such inaccura-
cies are most evident in posterior views of the reconstructed
avatar, where artifacts from the original background are ob-
served in the volumetric representation. These background
elements remain visible during novel viewpoint synthesis,
degrading the quality of rendered results. This shows our
method’s reliance on background segmentation, particularly
for images with ambiguous foreground-background bound-
aries or similar color distributions.

C.2. Loose Clothing Deformation

Modeling loose clothing, such as dresses and skirts,
presents challenges for our method, as demonstrated in
Fig. 13. This problem arises from the parametric body
model, which represents the human form as a close-fitting
mesh and lacks explicit mechanisms for loose garments.
While the rendered appearance can be plausible when the
avatar’s legs are proximate, fidelity degrades upon leg sepa-
ration. The Gaussian splats, conditioned to align with to the
parametric body surface, follow the leg geometry instead

of preserving the garment’s structure, leading to unrealistic
deformations. This limitation indicates the need for mod-
eling loose clothing deformation separately from the body
mesh [120], especially for garments with flow-dependent
behaviors that deviate from standard body topology.

C.3. Back View Synthesis Inconsistency
A fundamental limitation is the ill-posed problem of single-
image to 3D generation, which particularly affects back
view synthesis in our approach. As shown in Fig. 14, our
method exhibits challenges in generating high-fidelity back
views. While an input image provides strong frontal appear-
ance cues, the synthesized back views can display reduced
quality. Compared to ground truth renderings from similar
viewpoints, our method often produce textures with lower
fidelity, pattern inconsistencies, and blurred details. This
behavior is attributed to two main factors: first, a potential
bias in the video diffusion model towards frontal or near-
frontal views during synthetic data generation, and second,
the inherent ambiguity of inferring occluded geometry and
appearance from a single perspective.

D. Runtime Analysis
We evaluate the computational efficiency of our proposed
pipeline. All experiments were conducted on a high-
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(a) Input (b) Avatar (c) Input (d) Avatar 

Figure 12. Failure case of segmentation artifacts. When seg-
mentation fails to properly separate the subject from the back-
ground, residual background elements become embedded in the
avatar.

(a) Input (b) Legs Together (c) Legs Apart (d) Legs Apart

Figure 13. Failure case of loose clothing deformation. Our
method struggles with modeling loose garments like dresses due
to limitations of the underlying parametric body model.”

(a) Input (b) Avatar (c) Ground Truth (d) Avatar (Zoom in)

Figure 14. Failure case of back view synthesis. The inherently
ill-posed nature of single-image 3D generation results in degraded
quality for unseen viewpoints.”

performance computing node equipped with an AMD
EPYC 7742 64-Core Processor (128 logical cores) and an
NVIDIA A100-SXM4-80GB GPU. Runtimes were mea-
sured using the average generation time of 30 randomly se-
lected rendering samples from the THuman dataset [108],
with the single image resolution of 512 × 512 pixels. Ta-
ble 5 reports the average running time for each constituent
component of our pipeline. It should be noted that run-
time measurements may vary significantly across differ-
ent hardware configurations; for example, performance on
consumer-grade GPUs or older server architectures would
likely result in longer processing times compared to our
high-end experimental setup.

Pipeline Step Time (min)

Video Diffusion Module 18.33
Identity Preservation Module 3.02
Image Restoration Module 11.00
SMPL-X Fitting 60.55
3DGS Avatar Training 273.23

Total 366.13

Table 5. Running time analysis. Average running time in minutes
for each component of our pipeline.

As detailed in Table 5, the total processing time for our
pipeline is approximately 6 hours per subject. The 3DGS
avatar training stage is identified as the primary computa-
tional bottleneck, accounting for approximately 3/4 of the
total runtime. While this initial training phase represents a
significant computational investment, the subsequently gen-
erated 3D avatars can be rendered in real-time. Future work
will explore optimization techniques to reduce the compu-
tational demands, particularly for the most intensive stages
of the pipeline.

E. Societal Impact
SVAD generates animatable 3D avatars from single input
images, enhancing accessibility to personal digital repre-
sentation. As with other generative AI technologies ad-
dressing human likeness, this capability presents both pos-
itive and negative societal implications. Positively, SVAD
allows broader access to 3D avatar creation, enabling
users to readily produce personalized digital representations
for VR/AR, gaming, and enhanced online communication
without specialized expertise. This can foster more en-
gaging virtual interactions and broaden creative expression.
Negatively, the ease with which an avatar can be generated
from any single image, potentially without consent, poses
considerable risks. Unauthorized 3D avatars could be ex-
ploited for deepfakes [103], impersonation, harassment, or
privacy violations. While comprehensive technical safe-
guards against all misuse are challenging, we will empha-
size responsible application and the critical need for consent
in any public dissemination of our work. We advocate for
a multi-faceted approach to mitigate these risks including
detection technologies, ethical guidelines, and legal frame-
works and hope our research prompts further discussion on
these vital societal considerations for the responsible devel-
opment and deployment of such technologies.
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Single Image Input Avatar in Neutral Pose Novel Pose, Novel View Synthesis

Figure 15. 3D Avatars from People Snapshot [2] dataset Our method successfully generates high-fidelity avatars for various subjects
from a single input image, demonstrating robust identity preservation and consistent appearance across novel poses and viewpoints.
Zoom in for more details.
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Single Image Input Avatar in Neutral Pose Novel Pose, Novel View Synthesis

Figure 16. 3D Avatars from People Snapshot [2] dataset. SVAD enables creation of detailed and expressive avatars from a single image,
accurately reproducing clothing details and facial features while maintaining realism in different poses.  Zoom in for more details.
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Single Image Input Avatar in Neutral Pose Novel Pose, Novel View Synthesis

Figure 17. 3D Avatars from the THuman [108] scan renderings. Our approach generalizes well to the THuman dataset, producing
realistic avatars with high geometric and texture fidelity.  Zoom in for more details.
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Single Image Input Avatar in Neutral Pose Novel Pose, Novel View Synthesis

Figure 18. 3D Avatars from Internet Images. SVAD demonstrates strong generalization capability to in-the-wild images, successfully
reconstructing recognizable 3D avatars of various celebrities from single unconstrained photographs. The method preserves distinctive
appearance characteristics while enabling novel pose animation.  Zoom in for more details.
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