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Abstract 
 
In the field of egocentric vision, the accurate estimation of 3D hand poses is 

critical, particularly in applications such as augmented and virtual reality, and 

human-computer interaction. This thesis introduces a methodology to enhance 

the precision and stability of 3D hand pose estimation from single RGB images, 

employing a novel pseudo-ground-truth data capture system with wrist and head 

mounted cameras. Our approach takes advantage of the unique perspectives 

offered by this multi-camera setup to address the challenges of occlusion and 

the high degrees of freedom in hand movements. 

The core contributions of our thesis are manifold. Firstly, we present an 

innovative pseudo-ground-truth data capture system utilizing wrist-mounted 

cameras, to gather accurate hand data. This data is then used to train previous 

state-of-the-art models, leading to significant performance enhancements. 

Secondly, we initiate bounding box detection from the wrist cameras rather than 

the conventional single-head camera view, enabling more consistent and precise 

tracking of hand movements. 

Our experimental results demonstrate the superiority of our approach over 

current state-of-the-art techniques. We achieve marked improvements in the 

accuracy of visible point estimation and the stability of occluded point prediction. 

The employment of wrist-mounted cameras for bounding box detection and the 

generation of pseudo-ground-truth data from these cameras significantly bolster 

the robustness of hand pose estimation methods. Our findings herald a future 

of more precise and stable 3D hand pose estimation in egocentric scenarios, 

facilitating the development of more natural and intuitive user interfaces in 

immersive technologies. 

 

Keywords: 3D Hand Pose Estimation, Egocentric Vision, Computer Vision 
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Chapter 1 

 

Introduction 

 
3D hand pose estimation is a fundamental component for interactive 

applications, critically underpinning advancements in augmented and virtual 

reality, as well as human-computer interaction. The task is notably challenging 

due to the hand's complex movements and the occurrence of occlusions that 

often obscure essential keypoints. Efforts within this research domain aim to 

refine the precision of visible hand keypoints and to bolster the reliability of 

occluded point predictions. 

 

 

 

Figure 1.1 Monocular 3D Hand Pose Estimation 
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This thesis rigorously examines the established pipeline of monocular 3D hand 

pose estimation, as portrayed in Figure 1.1. The figure depicts the standard 

pipeline of monocular 3D hand pose estimation, commencing with an RGB 

camera capturing the image, progressing through neural network analysis, and 

culminating with the generated 3D hand pose. A neural network's success in this 

domain is intimately linked to the quality of the training dataset. To this end, we 

present an innovative data-centric strategy that enhances the data acquisition 

process integral to monocular 3D hand pose estimation. By integrating a data 

capture system utilizing wrist-mounted and head cameras, our approach 

facilitates the collection of pseudo-ground-truth data that is invaluable for 

training cutting-edge models. Although our annotations may not attain the 

precision of those obtained from motion capture suits or multi-camera systems, 

the agility and simplicity of our setup allow for rapid data collection in diverse 

environments, including those 'in the wild.' This capability significantly expands 

the breadth and depth of training data, thereby enhancing model performance. 

By leveraging the high-fidelity data from our easy-to-deploy capture system, we 

have recognized noticeable improvements in the accuracy and stability of hand 

pose estimations, as verified by our empirical results. This advancement not only 

quantitatively surpasses current state-of-the-art models but also qualitatively 

enhances the interpretability of hand gestures, enabling for more natural and 

intuitive user interfaces in a range of immersive technological applications. 

 
 

 

 

 

 

 

 

 

 



 3 

 

 

 

 

 

Chapter 2 

 

Related Works 

 
2.1 Monocular RGB Hand Motion Capture 

 
Recent explorations into the field of monocular RGB 3D hand pose capture 

have been motivated by the inherent complexity of depth ambiguity. 

Zimmermann and Brox [1] develop a CNN that deduces 3D joint coordinates 

straight from RGB images. A novel approach by Iqbal et al. [2] introduce a 2.5D 

heatmap approach that merges 2D joint placement with depth cues, substantially 

enhancing precision. Multiple studies are adopting diverse image datasets [3,4,5] 

to expand training variability, aiming for broader generalization. Mueller et al. [6] 

curate an extensive rendered dataset with CycleGAN post-processing to mitigate 

domain discrepancies. However, their efforts concentrate on pinpointing joint 

locations without addressing the rotation of joints, a critical factor for animating 

hand meshes. Attempts to compute joint rotations [7,8], involve fitting a 

prototypical hand model to the estimations through a repetitive optimization 
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process, which is computationally intensive and dependent on elaborate energy 

functions. Proposals to deduce deformable hand mesh parameters directly from 

images in a unified process [9, 10] have been made, but such rotation estimations 

are subject to weak supervision, leading to compromised precision. Ge et al. 

propose GraphCNN [12] to directly infer a hand mesh, although the necessity 

of a specialized dataset with accurate hand meshes presents a substantial 

challenge. Rong et al. introduced Frankmocap [40], a system that draws upon 

earlier advancements in human body mesh recovery [60]. It utilizes the MANO 

[31] hand model to infer hand pose and shape directly from a single RGB image. 

Subsequent studies [61, 62] have adopted a more direct method, choosing to 

estimate the hand mesh vertices directly. Although this approach typically yields 

results that are more consistent with visual observations, it tends to be less 

reliable when dealing with occlusions or incomplete views of the hand. Progress 

in 3D hand pose estimation has spurred advancements in related fields as well, 

such as simultaneous hand poses and object interaction modeling [63,64], and 

the intricate task of capturing the interaction between two hands [65,66,67,68].  

In our research, we focus on enhancing the reliability of these regression-based 

methods. With our cost-effective and rapid techniques for collecting pseudo- 

ground-truth data through our system, we can integrate our findings with 

previous method. This integration has the potential to significantly boost 

performance and accuracy in the field of 3D hand pose estimation.  

 

 

2.2 Datasets for 3D Hand Pose Estimation 

 

Regarding datasets for hand pose estimation, Table 2.1 compiles comprehensive 

data on the existing 3D hand pose datasets. Early egocentric pose estimation 

methodologies annotated 2D points on depth snapshots [15] or employed 

magnetic markers [21]. Nevertheless, the precision of these benchmarks is 

limited by sensor noise and the extensive labor required for annotations. Hence, 
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the focus of most research in 3D hand pose estimation has been on utilizing 

static exocentric cameras [5,6,22,23,24,25,26,27] or leveraging such datasets to 

refine egocentric hand pose predictions [28]. Multi-camera setups offer clear 

benefits, as discussed widely in literature [29]. The quantity of images enhances 

with the number of cameras, exemplified by InterHand2.6M [13] with its 

extensive view range. Triangulation from multiple 2D keypoints [6,24] or 

template fitting [5,22,27,30] (like using the MANO model [31]) ensures accurate 

3D keypoint annotation. Synchronized egocentric and exocentric camera 

systems have been introduced in recent activity datasets like Assembly101 [32] 

and H2O [30], which can significantly alleviate the annotation process. 

 

  

 

 

 
  

 Modality #img #views Annotation approach 

InterHand2.6M RGB-D 2.59M 80-140 Manual + 2D triangulation 

Assembly Hands RGB 2.81M 8+4(ego) Manual + 3D volume + refinement 

EgoDexter RGB-D 3K 1(ego) Manual 

FreiHAND RGB 37K 8 Manual + 3D volume + template 

fitting 

HO3D RGB-D 103K 5 2D + template fitting 

DexYCB RGB-D 508K 8 Manual + template fitting 

Panoptic Studio RGB 15K 31 2D + triangulation 

H20 RGB-D 571K 4+1(ego) 2D + template fitting + smoothing 

Table 2.1 Existing Datasets for 3D Hand Pose Estimation 
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Chapter 3 

 

Method 

 
3.1 System Setup 

 
In our egocentric vision framework, we leverage the distinct perspectives 

provided by a combination of head-mounted and wrist-mounted cameras to 

enhance the fidelity of 3D hand reconstruction. With the prevalence of mobile 

phones and wide-angle action cameras, such as those in the GoPro series, radial 

lens distortion has become a common artifact. To counteract this, we employ 

the single-parameter division model [33] to correct for radial distortion, chosen 

for its simplicity and effectiveness. Our setup comprises three GoPro Hero 11 

cameras: one mounted on the user's head and one on each wrist, using adjustable 

mounts for optimal positioning flexibility. Figure 3.1 illustrates our system setup 

and displays a sample capture from the three synchronized cameras. After 

evaluating the trade-offs between output quality and computational expense, we 
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selected a capture resolution of FHD at 30 frames per second as our optimal 

recording setting. 

Data capture sessions spanned various everyday environments, such as offices, 

kitchens, bathrooms, dining areas, bedrooms, classrooms, and outdoor locations, 

with some scenarios depicted in Figure 3.2. During the application of structure-

from-motion (SfM) [34] techniques for scene reconstruction and the 

perspective-n-point (PnP) [35] algorithm for camera localization, challenges 

arose in feature-scarce scenes that compromised the quality of reconstruction 

and camera localization. To overcome this, we utilized printed patterns on A4 

paper, strategically placed within the scenes to support feature detection based 

on SIFT [36]. This method substantially improved the robustness of our system. 

In total, we collected 60 sequences, each 1-2 minutes in duration, resulting in 

approximately 180,000 frames captured across 15 distinct settings. 

 

Figure 3.1. The setup of our system. The left section depicts the capture environment, the 
middle section highlights the GoPro cameras attached to their mounts, and the right section 
demonstrates a synchronized capture from all three cameras.  
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3.2 Enhancing Hand Bounding Box Detection  

 
Recent advancements in hand pose estimation techniques [37,38,39,40] primarily 

focus on detecting a hand’s bounding box within an image, subsequently 

cropping this region for regression. This method is crucial as irrelevant regions 

can disrupt accurate hand pose estimation. Hence, precise bounding box 

detecting is critical for effective 3D hand pose estimation. In our pseudo-

ground-truth generation pipeline, detailed in the subsequent section, we employ 

3D hand pose estimators to estimation the initial 3D hand pose from the 

captured data. Extensive testing with various pose detectors revealed that the 

quality of the reconstruction significantly diminishes if the bounding box is 

inaccurately detected evident in cases of incorrect hand identification (left/right), 

improper region selection, or failure to detect the hand. Therefore, precise 3D 

hand pose extraction is vital to our pipeline, and we have addressed these 

bounding box issues to enhance accuracy.  

Our system setup, involving attaching two cameras to the user’s wrists, 

inherently improves the precision of bounding box detection. These cameras 

consistently face the hands in a fixed position, confining the movement of the 

hands to a specific area within the camera frame. Furthermore, leveraging the 

known camera parameters of both head and wrist-mounted cameras, we can 

Figure 3.2 Images showcasing environments captured using our system, displayed 
sequentially. On the left, a scene from an office setting; in the center, a kitchen environment; 
and on the right, a storage room. Each image represents the distinct characteristics and 
details of the respective environments as captured by our system.     
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effectively transfer the bounding box detected by the wrist cameras to the head 

camera, ensuring consistent and accurate hand pose estimation across different 

viewpoints.  

We initially identify the bounding boxes of the hands, denoted as 𝐵!""#$ =

{𝑝1, 𝑝2, 𝑝3, 𝑝4}  where each 𝑝% = (𝑢% 	, 𝑣%)  represents the image pixel 

coordinates. Specifically, we detect the left hand using the left wrist camera, and 

the right hand using the right wrist camera, utilizing the 100DOH model by Shan 

et al. [41]. Subsequently, we apply an optical flow-based tracking method 

developed by Teed et al. [42] to consistently track these bounding boxes 

throughout the video sequence. Optical flow-based methods, effective though 

they are, exhibit certain weaknesses, especially in scenarios involving rapid 

movements or blurred imagery. Additionally, these methods can be prone to the 

accumulation of small errors over time, potentially leading to diminished 

tracking accuracy. However, with the benefits of our system mentioned above, 

we observed robust tracking throughout the sequence.  

With the camera intrinsic parameters 𝐼&#%'( of the wrist cameras, each 2D point 

is back-projected to form 3D rays in the camera coordinates. We define 𝜋 the 

projection function that projects 3D points in camera coordinates back to 2D 

image coordinates, 𝐾  the intrinsic matrix of the camera. Introducing the 

function 𝑅(𝑑) 	= 	 5
𝑥(𝑑)
𝑦(𝑑)
𝑧(𝑑)

9 to represent the 3D coordinates at depth 𝑑	the 

optimization problem can be reformulated as in Equation 1. 

 

min
$
|𝜋(𝐾 × [𝑹(𝑑), 1])) − [𝑢, 𝑣, 1]) |* 

  
 

Now that we have the optimized 𝑑, we can now find the 3D bounding box 

points in the wrist camera’s coordinates as in Equation 2.  

(1) 
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𝑃+,&#%'( = 𝑑 × I-./0123 	× E
𝑢
𝑣
1
F 

 

We can then transform the 3D bounding box points in the camera coordinates 

into the world coordinate system using the wrist camera’s extrinsic matrix 

𝐸&#%'(' by Equation 3.  

 

𝑃+,&"#4$ = 𝐸&#%'( × 𝑃+,&#%'( 
 

For perceiving the 3D bounding box from the head camera’s viewpoint, the 

world coordinates are translated to the head camera’s coordinate space using its 

extrinsic matrix, then the 3D points are projected onto the head camera’s plane 

using its intrinsic matrix, 𝐼567$ as shown in Equation 4.  

 

𝐵567$ = 𝐼567$ × 𝐸567$23 × 𝑃+,&"#4$ 

 

 

3.3 Generating Pseudo Ground Truth Data 

 

Figure 3.3. Our system’s pipeline for generating pseudo ground truth data. Beginning 
with captured RGB hand data, the process obtains 3D hand joint coordinates and the 
extraction of corresponding MANO hand pose parameters 

(2) 

(3) 

(4) 
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3.3.1 Data Capture, Preprocessing 

 
To generate a sequence of hand data, we initially capture a 1-2 minutes video 

within the scene of action and extract the frames 𝑉'!686  to reconstruct the 

world coordinate space. Subsequently, using our tri-camera setup, we capture 

hand data from the left, right, and head cameras each noted as 𝑉4 , 𝑉# , 𝑉5 

extract frames, and manually synchronize the videos via clapping sound data. 

Employing 𝑉'!686 , we reconstruct the 3D point cloud space 𝑊 through SfM. 

For enhanced scene reconstruction, we utilized the SuperPoint [43] and 

SuperGlue [44] feature extractor and matcher, respectively. SuperPoint is an 

advanced deep learning-based method for keypoint detection and description. It 

efficiently identifies salient points in images, proving robust features that are 

crucial for accurate matching across different views. SuperGlue, complementing 

SuperPoint, is a powerful feature matching algorithm. It employs graph neural 

networks to find correspondences between sets of keypoints, even in challenging 

conditions where traditional methods like SIFT falter. The combination of 

SuperPoint and SuperGlue integrated with SfM offers superior performance, as 

evidenced in Figure 3.5.  

Having reconstructed the 3D space with 𝑉4 , 𝑉# , 𝑉5	, and 𝑊, we proceed to 

Figure 3.4 Comparison of SIFT feature detection with SuperPoint on the left and SIFT 
feature matching with SuperGlue on the right. Results show that SuperPoint and 
SuperGlue show superior performance than SIFT in both feature detection and matching.  
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determine the camera extrinsics, which include the rotation matrix 𝑅  and 

translation matrix 𝑡, to localize the cameras within the world coordinate space. 

This localization is achieved through PnP [45], a geometric algorithm used for 

estimating the pose of a camera in 3D space given a set of 2D-3D point 

correspondences. However, applying PnP directly to frames captured by the 

hand presents challenges. While the RANSAC algorithm [46], a robust method 

for outlier rejection in data fitting, excludes many outliers from feature matching, 

it does not entirely eliminate all outliers, such as features originating from hand 

features. To address this, we use off-the-shelf segmentation model [47] to obtain 

hand segmentation masks. This model generates hand segmentation masks 𝑀, 

which are then input into PnP, effectively preventing the detection of features 

within the masked regions, thereby refining the pose estimation process.  

 

 

3.3.2 Pseudo Ground Truth with Processed Data 
 

Upon preprocessing the captured data and localizing the cameras within the 

global space, we begin extracting the initial hand pose, denoted as 𝐽%8(%74 ∈

ℝ+×3, from the head-view video 𝑉_ℎ. This approach is preferred, as egocentric 

Figure 3.5. Comparison of the quality of scene reconstruction using SfM against SfM 
with SuperGlue and SuperPoint. Integrating SuperGlue and SuperPoint along with the 
traditional SfM method led to accurate 3D reconstruction and camera localization.  
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3D hand pose estimators have demonstrated superior performance with head-

view videos compared to wrist-captured videos due to the lack of wrist-captured 

datasets for training. We utilize an off-the-shelf 3D egocentric hand pose 

estimator based on a weak perspective model, as elucidated in the work by Rong 

et al. [40]. This model operates under the assumption that objects, such as hands 

in our context, are positioned at a sufficient distance from the camera, permitting 

the perspective effect to be approximated as a mere scaling factor. 

However, this assumption introduces a limitation: the scale and position of 

hands in the reconstructed space may be inaccurately represented due to this 

simplification. To overcome this and obtain accurate 3D hand in the scene, we 

optimize scale α ∈ ℝ  and translation β ∈ ℝ+×3  parameters. This 

optimization aims to minimize the 3D reprojection error. It involves the 

camera’s intrinsic 𝐾 ∈ ℝ+×+ , rotation 𝑅	 ∈ ℝ+×+ , translation 𝑡 ∈ ℝ+×3 

matrices, and projects 𝐽%8(%74 into each camera’s own coordinate system. The 

alignment’s accuracy is further refined by comparing the L1 distance between 

the detected 2D joints 𝐽*, ∈ ℝ*3×* and the projected 3D hand joints in each 

camera view. The optimization process is encapsulated in Equation 5. 

min
:,<

S|𝐽*$
(%) − πU𝐾 V𝑅Vα𝐽initial

(%) + βX + 𝑡XY |3

D

%E3

 

 

After obtaining the raw pseudo-ground-truth 3D hand data, we implement a 

rigorous filtration process to ensure the high-quality inputs for training. This 

process is guided by a set of custom-designed criteria aimed at identifying and 

eliminating suboptimal or misleading data. Our primary criterion is based on the 

3D reprojection of hand joints into the image space. Given the wrist camera’s 

view consistency, particularly the restricted range of motion of the hand within 

the frame, we discard any data where the hand appears outside a predefined 

bounding box. This strategy is underpinned by the rationale that a hand 

reprojected outside this box is likely indicative of erroneous data.  

(5) 
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Furthermore, we employ temporal coherence as a secondary filter. This involves 

analyzing the distances between keypoints in consecutive frame reprojections. 

Considering our data capture rate of 30 frames per second, substantial positional 

shifts between successive frames are unlikely. Thus, data exhibiting such marked 

changes are classified as unreliable and excluded. These stringent filtering criteria 

play a pivotal role in preserving the integrity and reliability of our training dataset.  

Upon refining the 3D hand joint data to 𝐽F%874 , we proceed to derive the hand 

mesh 𝐻G6'5 by fitting the 3D joints to the MANO model parameters. The 

MANO hand model provides a parametric representation of hand poses and 

shapes. For each hand, the corresponding MANO model is loaded. Before 

optimization, we align the palm joints from the captured data with those of the 

MANO model using a rigid body registration process [48]. This step is essential 

for accurate initial positioning of the hand model. This optimization objective is 

to minimize the discrepancy between the joint positions of the model and those 

in the captured 3D data. We employ the Dogleg optimization method [49], with 

the objective function encompassing the difference between corresponding 

joints in the model and the captured data, alongside a regularization term for the 

model’s shape parameters. Upon completion of this optimization, we extract 

pose, shape, and transformation parameters, which include joint rotations θ ∈

ℝ(3HI+)×+ , shape coefficients β ∈ ℝ3J×3 , and the transformation matrix 

comprising translation and rotation components. The optimization objective is 

formulated as follows in Equation 6.  

min
K,<,)

\S|𝐽MANO
(%) (θ, β, 𝑇) − 𝐽final

(%) |**
D

%E3

+ λ|β − βmean|**_ 

 

Our practical framework establishes a robust pipeline for the generation and 

refinement of pseudo-ground-truth data. By incorporating strict filtering criteria 

and optimization techniques, we ensure the precision and reliability of our 3D 

hand pose data. The integration of the MANO model, combined with our 

optimization strategy, not only enhances the fidelity of the hand mesh 

(6) 
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reconstruction but also expands the dataset with detailed pose and shape 

parameters by obtaining the 3D mesh of the hand for training SOTA models.  

 

  

Figure 3.6. Visualization of head, wrist cameras and the generated pseudo-ground-truth 
3D hand data in reconstructed space.    

Figure 3.7. 3D reprojection of generated pseudo-ground-truth joints in image space.  
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Chapter 4 

 

Experiments  

 
4.1 Implementation Details 

 
Our evaluation of the generated pseudo-ground-truth data involves training on 

current state-of-the-art models. We adopt the ACR [50] network architecture, 

implementing it within the PyTorch framework [51]. The model takes a RGB 

image as input and employs a feature map encoder. This encoder is responsible 

for extracting various maps, including hand-center maps, part-segmentation 

maps, cross-hand prior maps, and parameter maps. These are then aggregated 

to form the final feature set for hand model regression. 

 

4.1.1 Training Stage Details 
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For benchmarking across multiple datasets, we trained our model using the 

Adam optimizer [52] with an initial learning rate of 5 × 102H  across eight 

epochs. Our setup utilized dual NVIDIA 3090 GPUs with a batch size of 16. 

To accelerate the training phase, we initialized the network with a pre-trained 

HRNet-32W [53] backbone. The backbone feature map is set to 128	 × 128, 

and the four pixel-aligned output maps are sized at 64	 × 64. Augmentation 

technique es such as random scaling, rotation, flipping, and color jittering were 

applied during training to enhance robustness as in the original ACR paper. 

We enhance our training by using different hand datasets featuring both 2D and 

3D annotations. Specifically, our compilation includes part of the Assembly 

Hands [14], InterHand2.6M [13] datasets, and the full DexYCB [18], FreiHAND 

[16], HO3D [17] datasets, and additional 180,000 3D hand data from our 

pseudo-ground-truth system collection. The size of the training set is 

approximately 3	 × of the original ACR model. Proportionally, approximately 

35% of the images are sourced from uncontrolled, in-the-wild environments, 

while the remaining data is gathered in controlled settings.  

 

 

4.1.2 Testing Stage Computation  
 

In our testing phase, HRNet-32W serves as the default backbone model. For 

comparative analysis against state-of-the-art models, the full official test set was 

employed. A confidence threshold was configured at 0.25 to detect a maximum 

of one left hand and one right hand per image. This setting aligns with our data’s 

structural composition, which consistently presents only a single left and right 

hand across training images captured from the wrist cameras.  

To ensure our model's resilience against varied real-world scenarios, our test 

suite comprises images featuring diverse lighting conditions, background clutter, 

and hand-object interactions. This diversity is critical for testing the model's 
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ability to generalize from our pseudo-ground-truth data to unpredictable in-the-

wild settings. 

Our framework includes stress tests against occlusions and rapid hand 

movements to validate the model's temporal consistency and resilience to 

transient visual obstructions. These scenarios are crucial for applications in 

dynamic environments where occlusion and motion blur are common. This 

comprehensive testing framework is designed to validate the hypothesis that our 

pseudo-ground-truth data, combined with our novel camera system, significantly 

enhances the hand pose estimation accuracy in comparison to the current state-

of-the-art methodologies. 

 

4.2 Datasets 
 

A robust dataset serves as the foundation of any machine learning task, more so 

in the realm of computer vision where the nuances of data diversity and volume 

directly influence model performance. For enhancing 3D hand pose estimation 

from single RGB images, we have selected and utilized a variety of datasets, each 

serving a strategic purpose in both training and testing phases. These datasets 

range from capturing intricate hand-object interactions to varied egocentric hand 

movements, providing comprehensive coverage of the challenges inherent in 

hand pose estimation. In this section, we describe each dataset's unique 

characteristics, the scope of their annotations, and their specific applications in 

our research, detailing how they contribute in synergy with our collected pseudo-

ground-truth data on the model performance.  

 
InterHand2.6M [13] is a unique resource for two-hand interaction, offering 

accurate mesh annotations across 1.36M training frames and 850K testing 

frames, subdivided into interacting hands (IH) and single hands (SH). We 

employ the IH subset, down-sampled to 5fps, for our testing purposes. 
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FreiHAND [16] provides a 3D single-hand pose estimation dataset featuring 32 

subjects, coupled with MANO and 3D keypoint annotations. It encompasses 

132,560 training samples and 3,960 for evaluation, the entirety of which is 

utilized in our testing set. 

HO-3D [17] dataset, a compilation of hand-object interactions captured in both 

multi-camera and single-camera configurations, includes 66,034 training and 

11,524 test images across 68 sequences. We leverage the evaluation set from 

version 3 for our tests. 

Assembly Hands [14] offers a large-scale, egocentric dataset with precise 3D 

hand pose annotations pertinent to complex hand-object interactions, sourced 

from the Assembly101 dataset [55]. It features 3.0M annotated images, including 

490K from an egocentric perspective. Our testing employs the entire evaluation 

set. 

DexYCB [18] caters to 3D hand pose and shape estimation during hand-object 

interactions, with a collection of over 582,000 frames from 10 subjects, 

annotated with 3D joint positions and shapes via MANO. The full evaluation 

set is incorporated into our testing framework. 

Custom Bounding Box Detection Dataset due to the absence of suitable data 

for hand bounding box detection from a multi-view camera setup. This dataset 

comprises 3 sequences with manually annotated bounding boxes for hands, 

capturing the coordinates at multiple camera angles. It totals 4,500 frames and is 

exclusively used for testing our bounding box transfer methodology. 

 

 

4.3 Evaluation Metrics 
 

Mean Per-Joint Position Error (MPJPE) and Mean Per-Vertex Error 

(MPVPE): These metrics compute the average Euclidean distance between 

predicted and ground truth (GT) 3D joint locations and mesh vertices in 
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millimeters, post-alignment to the root joint, providing a localized measure of 

geometric accuracy. 

Procrustes Aligned MPJPE (PA-MPJPE) and Procrustes Aligned MPVPE 

(PA-MPVPE): By performing Procrustes analysis prior to computing errors, 

these variations neutralize global transformation effects, offering a refined 

analysis of the model’s positional accuracy independent of pose variations. 

Mean Relative-Root Position Error (MRRPE): This metric evaluates the 

relative translation accuracy between paired hands by measuring the 3D distance 

between the predicted and GT root joint positions of the right hand relative to 

the left. 

Intersection over Union (IoU): Employed for bounding box precision, IoU 

measures the overlap between predicted and GT bounding boxes, with higher 

values indicating greater accuracy. 

Mean Average Precision (mAP): Utilized to assess the accuracy of the object 

detection model, mAP averages the precision at different levels of recall across 

multiple thresholds. 

Dropout Rate: This reliability measure quantifies the frequency of missed hand 

detections in frames where a hand is present, with lower rates indicating more 

consistent detection. 

 

 

4.4 Qualitative Evaluation 
 

We present a qualitative analysis comparing our trained model's performance 

with current state-of-the-art methods across a variety of challenging scenarios, 

substantiated by visual comparisons in the subsequent figures. 

ACR [50]: Figure 4.1 showcases a side-by-side comparison between our refined 

ACR model, trained with our novel pseudo-ground-truth data, and the original 

ACR. Our method manifests superior fidelity in the reconstruction of intricate 
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single and dual-hand poses, indicating significant strides in structural detail and 

pose accuracy. 

Interwild [56]: In scenarios characterized by occlusions and motion-induced 

blur, our model demonstrates exceptional performance (refer to Figure 4.2). It 

consistently outstrips Interwild in the precision of hand pose estimations, 

affirming its robustness against partial visibility and dynamic conditions. 

Frankmocap [40]: Comparative results depicted in Figure 4.3 illustrate our 

model's superiority over Frankmocap in rendering plausible hand orientations 

and movements, thereby reinforcing our method's adeptness at capturing 

complex hand dynamics. 

100DOH [41]: Figure 4.4 underscores the precision of our model in bounding 

box detection, with green and red boxes delineating left and right hands, 

respectively. Notably, our model upholds a high detection accuracy even in 

instances of noticeable occlusion, underscoring the resilience of our prediction 

capabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Qualitative comparison on our collected test set against the original ACR 
model. Our approach generates better results in single, two-hand reconstruction. 
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These qualitative assessments illuminate our model's advanced capabilities, 

especially in handling intricate and real-world scenarios, strengthening its 

suitability for deployment in a multitude of practical applications. 

 

 

  

Figure 4.2 Qualitative comparison on our collected test set against Interwild. Our 
approach generates better results in challenging scenarios such as occlusion and blurry 
cases.  

Figure 4.3. Qualitative comparison on our collected test set against Frankmocap. Our 
approach generally produces more plausible results and accurate hand orientations. 
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Figure 4.4. Qualitative comparison using the FreiHAND evaluation set against ACR.  

Figure 4.5. Qualitative comparison using the Assembly Hands evaluation set against 
Interwild.   
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4.5 Quantitative Evaluation 
 

This section delineates a rigorous quantitative evaluation of our proposed model 

against prevailing state-of-the-art methodologies, using a series of benchmark 

datasets. We have meticulously evaluated performance on the FreiHAND, 

Assembly Hands, Interhand 2.6M, Ho-3D, DexYCB, and a Custom Bounding 

Box dataset. 

FreiHAND Dataset: Known for its complex and varied hand poses, the 

FreiHAND dataset provides a rigorous testbed for our model. Our model 

showcases marked improvements in scenarios with external occlusions and 

truncations, as evidenced by the results tabulated in Table 4.1, thus underscoring 

its robustness. 

Assembly Hands Dataset: The Assembly Hands dataset, with its emphasis on 

hand-object interaction, mirrors the complexities of real-world application 

scenarios. Our model's superior performance is validated in Table 4.2, where it 

is seen to outshine baseline models, confirming its adeptness at complex 

interaction contexts. 

Figure 4.6. Qualitative comparison using manually annotated data. In the figure, green, 
red bounding boxes represent left, right hand detections respectively. Our approach 
excels in predicting more accurate hand locations, even in challenging scenarios with 
severe occlusion..  
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Interhand 2.6M Dataset: The expansive and diverse collection of hand poses 

in the Interhand 2.6M dataset facilitates an extensive validation. Our model 

maintains a leading performance, as documented in Table 4.3, highlighting its 

scalability and generalization capabilities. 

Ho-3D Dataset: This dataset's focus on hand-object interactions poses unique 

challenges in modeling dynamic interplays. Our model's capability to accurately 

estimate hand poses within this context is substantiated by the results in Table 

4.4, revealing its comparative excellence in dynamic interaction settings. 

DexYCB Dataset: Tailored for hand-object manipulation assessment, the 

DexYCB dataset evaluates the intricacy of hand grasping actions. Our model 

showcases its proficiency, delivering high accuracy in hand pose estimation 

across the dataset's diverse interactions, as detailed in Table 4.5. This accentuates 

the model's versatility and precision in real-life mimicked interactions. 

Custom Bounding Box Dataset: Our custom dataset, annotated for bounding 

box detection in a multi-view environment, features scenarios with rapid hand 

movements and frequent occlusions. Our approach evidences commendable 

stability and tracking performance, with a notably low dropout rate highlighted 

in Table 4.6. This attests to the model's resilience and reliability, cementing its 

efficacy in dynamic and visually complex environments. 

 

 

 

 MPJPE↓  MPVPE↓ PA-MPJPE↓ PA-MPVPE↓ MRRPE↓ 

Interwild 17.2 24.5 14.4 20.8 11.2 

ACR [50] 16.1 22.4 13.3 19.3 12.1 

HTT [39] 18.1 22.5 15.2 20.1 10.1 

DIR [57] 17.7 23.1 14.2 18.4 11.3 

Frankmocap [40] 20.1 28.1 16.5 25.1 11.4 

Ours 15.8 21.3 12.8 18.6 11.8 

Table 4.1. Evaluation results on the FreiHAND test set. Our approach generates better results 
in reconstruction, particularly in challenging cases such as external occlusion, truncation.  

↓ 
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 MPJPE↓ MPVPE↓ PA-MPJPE↓ PA-MPVPE↓ MRRPE↓ 

Interwild 17.6 25.0 14.7 21.2 11.6 

ACR [50] 16.4 22.7 13.6 19.6 12.4 

HTT [39] 18.4 23.0 15.5 20.5 10.4 

DIR [57] 18.0 23.4 14.5 21.0 11.7 

Frankmocap [40] 20.4 28.5 16.7 25.5 11.6 

Ours 16.1 21.2 13.7 19.1 10.7 

 MPJPE↓ MPVPE↓ PA-MPJPE↓ PA-MPVPE↓ MRRPE↓ 

Interwild 17.8 20.9 14.8 17.1 11.7 

ACR [50] 16.5 24.9 13.7 19.7 12.5 

HTT [39] 18.5 22.9 16.7 20.6 10.5 

DIR [57] 18.2 23.6 14.6 21.3 11.8 

Frankmocap [40] 21.2 24.5 16.9 25.7 11.8 

Ours 16.1 21.1 13.4 18.2 10.1 

 MPJPE↓ MPVPE↓ PA-MPJPE↓ PA-MPVPE↓ MRRPE↓ 

Interwild 19.2 13.4 15.7 17.9 16.1 

ACR [50] 15.8 19.1 20.4 20.1 14.5 

HTT [39] 18.1 21.4 22.3 22.3 18.3 

DIR [57] 19.6 20.4 17.9 21.4 15.8 

Frankmocap [40] 21.2 27.8 13.1 20.2 16.8 

Ours 13.9 17.1 10.8 14.9 11.0 

Table 4.2. Evaluation results on the Assembly Hands test set. Our method demonstrates 
superior performance in complex hand-object interaction scenarios, outperforming established 
baselines. 

Table 4.3. Evaluation results on the Interhand 2.6M test set. Our approach showcases a strong 
competitive edge in accurately capturing diverse hand poses within this extensive, large-scale 
dataset.  

Table 4.4 Evaluation results on the HO3D v3 dataset. The results highlight our model’s 
effectiveness in hand-object interaction scenarios, significantly enhancing pose estimation 
accuracy.   
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4.6 Ablation Study 
 

To describe the contributions of the individual components within our pipeline, 

we have executed a detailed ablation study, with a particular emphasis on 

evaluating the impact of integrating wrist-mounted camera data with traditional 

head-mounted camera data on model accuracy. 

Our approach capitalizes on the distinctive vantage points wrist-mounted 

cameras provide. These perspectives are crucial for capturing complex hand 

dynamics that may elude head-mounted devices. The results of our rigorous 

experimentation are in Table 4.7. The study evaluated the ACR model's 

performance using three distinct training data on the FreiHAND dataset: one 

with exclusively wrist camera data, one with only head camera data, and a third 

employing a composite of both wrist and head data, in conjunction with ACR's 

original datasets. 

 MPJPE↓ MPVPE↓ PA-MPJPE↓ PA-MPVPE↓ MRRPE↓ 

Interwild 18.1 19.3 20.8 21.4 13.9 

ACR [50] 14.2 19.1 17.1 19.9 11.5 

HTT [39] 16.7 19.0 17.7 18.9 12.5 

DIR [57] 18.6 19.1 18.5 23.9 12.2 

Frankmocap [40] 19.3 21.5 19.6 28.7 17.8 

Ours 13.8 18.3 16.4 17.7 12.4 

 IoU↑ mAP↑ Dropout Rate↓ 

100DOH [41] 71.8 78.0 5.0 

BodyHands [58] 67.4 79.5 4.2 

MediaPipe [59] 65.9 67.8 4.5 

Ours 87.1 91.2 1.8 

Table 4.5. Evaluation results on the DexYCB test set. The results show that our trained model 
excels in this dataset, particularly in the intricate scenarios of hand-object manipulations.  

Table 4.6. Comparison of hand bounding box detection in our manually annotated test dataset. 
Our approach significantly outperforms others in challenging scenarios, demonstrating a 
remarkably low dropout rate.  
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The results from our study yield interesting insights. The ACR model, when 

trained solely with additional head data, performed comparably to the baseline 

ACR model. However, the integration of wrist data contributed substantially to 

the model's accuracy, with the most marked improvement observed when both 

wrist and head data were utilized together. This fusion approach significantly 

outperformed the standalone datasets, affirming the collaborative benefit of this 

holistic data integration in the training regime. 

 

 

  
 MPJPE↓ MPVPE↓ PA-MPJPE↓ PA-MPVPE↓ MRRPE↓ 

ACR [50] 16.15 22.41 13.32 19.38 12.19 

Head Data  16.13 22.36 13.30 19.31 12.12 

Wrist Data 15.47 22.35 12.86 18.29 10.12 

Wrist + Head Data 15.44 21.31 12.83 18.21 10.01 

Table 4.7. Effectiveness of wrist data for improving accuracy of model on the FreiHAND test 
set. 
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Chapter 5 

 

Discussions 
 
This work outlines an integrated approach to enhance the precision and 

consistency of 3D hand pose estimation within egocentric vision frameworks. 

Our methodology, capitalizing on a novel multi-camera system that includes 

both head and wrist-mounted cameras, addresses the inherent shortcomings of 

conventional hand pose estimation methods. The unique vantage points 

afforded by the wrist-mounted cameras have been instrumental in refining 

bounding box detection and hand pose estimation. 

We presented a dual contribution to the field: firstly, the augmentation of 

existing 3D hand reconstruction models with pseudo-ground-truth data 

harvested from our adapted tri-camera system, which has markedly elevated the 

reconstruction quality over traditional models. Secondly, our innovative 

utilization of wrist cameras for the initial detection phase has improved the 

standard hand pose estimation pipeline, yielding enhanced consistency and 

precision in hand tracking, particularly in dynamic scenarios involving rapid 

movements and occlusions. 
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Empirical evaluations against benchmark state-of-the-art techniques have 

validated the means of our system, both quantitatively and qualitatively. The 

robustness of our approach, especially against the typical pitfalls of optical flow-

based methods such as error propagation and motion blur, underscores the 

soundness of our design and algorithmic decisions. 

While our findings are promising, we acknowledge the limitations inherent in 

our system, particularly in the context of scalability and the processing overhead 

introduced by multiple camera streams. Future work could focus on optimizing 

the computational efficiency of our framework and extending its applicability to 

more complex and diverse datasets. Additionally, exploring the integration of 

deep learning techniques to further refine the pseudo-ground-truth generation 

process could yield even more precise hand pose estimations. 

In summary, our research contributes significantly to the advancement of 

egocentric vision and 3D hand pose estimation, offering a robust solution that 

holds potential for expansive applications in HCI, AR, and VR. We are 

optimistic that the insights gathered from our work will spur further innovation 

in this area, leading to more continuous and natural user interaction prototypes 

in immersive technological environments. 
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국문 초록 

 

단일 이미지 기반 손 자세 추정을 위한  
손목 장착 카메라 시스템 

최연우 

컴퓨터공학부 

서울대학교 대학원 

 

이 논문은 증강 현실, 가상 현실 및 인간-컴퓨터 상호 작용과 같은 응용 

분야에서 중요한 자기 중심적 (egocentric) 비전 분야에서 3D 손 자세의 정확한 

추정을 소개합니다. 이 연구는 손목 및 머리에 장착된 카메라를 사용한 새로운 

유사 진실 데이터 (pseudo-ground-truth) 캡처 시스템을 사용하여 단일 RGB 

이미지에서 3D 손 자세 추정의 정밀도와 안정성을 향상시키는 방법론을 

제시합니다. 우리의 접근 방식은 이 다중 카메라 설정이 제공하는 독특한 

관점을 활용하여 손의 움직임에서의 가림과 자유도가 높은 도전을 해결합니다. 

우리 논문의 주요 기여는 다양합니다. 첫째, 우리는 정확한 손 데이터를 

수집하기 위해 손목 장착 카메라를 사용하는 혁신적인 유사 진실 데이터 캡처 

시스템을 제시합니다. 이 데이터는 기존의 최신 모델 (state of the art models)을 

훈련시켜 성능을 크게 향상시킵니다. 둘째, 우리는 일반적인 단일 머리 카메라 

관점이 아닌 손목 카메라에서 바운딩 박스 감지를 시작하여 손 움직임의 

추적을 더 일관되고 정확하게 만듭니다.  

우리의 실험 결과는 현재 최신 기술보다 우리 접근법의 우수성을 입증합니다. 

우리는 보이는 관절 추정의 정확성과 가려진 관절 예측의 안정성에서 뚜렷한 

개선을 달성합니다. 손목 장착 카메라를 사용하여 바운딩 박스 감지를 

향상시키며, 이러한 시스템에서 손 데이터를 생성함으로써 손 자세 추정 방법의 

강건성을 크게 강화합니다. 우리의 발견은 자기 중심 시나리오에서 더 정확하고 

안정적인 3D 손 자세 추정에 기여하고, 응용 분야에서 더 자연스럽고 직관적인 

경험을 사용자에게 제공하는 기술 개발에 기여합니다. 

    

주요단어: 3D 손 자세 추정, 컴퓨터 비전, 자기중심적 비전  

학번 : 2022-28614 
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